Glutamate transport asymmetry in renal glutamine metabolism.
نویسندگان
چکیده
d-Glutamate (Glu) was previously shown to block l-Glu uptake and accelerate glutaminase flux in cultured kidney cells [Welbourne, T. C., and D. Chevalier. Am. J. Physiol. 272 ( Endocrinol. Metab. 35): E367-E370, 1997]. To test whether d-Glu would be taken up by the intact functioning kidney and effect the same response in vivo, male Sprague-Dawley rats were infused withd-Glu (2.6 μmol/min), and renal uptake of d- andl-Glu was determined from chemical and radiolabeled arteriovenous Glu concentration differences times renal plasma flow. The amount removed was then compared with that amount filtered to obtain the antiluminal contribution. In the controls, l-Glu uptake measured as net removal was 33% of the arteriall-Glu load and not different from that filtered, 27%; however, the unidirectional uptake was actually 58% of the arterial load, indicating that antiluminal uptake contributes at least half to the overall Glu consumption. Surprisingly, the kidneys showed a more avid removal ofd-Glu, removing 73% of the arterial load, indicating uptake predominantly across the antiluminal cell surface. Furthermore, uptake ofd-Glu was associated with a 55% reduction in l-Glu uptake, with the residual amount taken up equivalent to that filtered;d-Glu did not increase the excretion of the l-isomer. However, elevating plasma l-Glu concentration reduced uptake of thed-isomer, suggesting a shared antiluminal transporter. Thus there is an apparent asymmetrical distribution of the d-Glu transporter. Under these conditions, kidney cortexl-Glu content decreased 44%, whereas net glutamine (Gln) uptake increased sevenfold (170 ± 89 to 1,311 ± 219 nmol/min, P < 0.01) and unidirectional uptake nearly threefold (393 ± 121 to 1,168 ± 161 nmol/min, P < 0.05); this large Gln consumption was paralleled by an increase in ammonium production so that the ratio of production to consumption approaches 2, consistent with accelerated Gln deamidation and subsequent Glu deamination. These results point to a functional asymmetry (antiluminal vs. luminal) for Glu transporter activity, which potentially plays an important role in modulating Gln metabolism and renal function.
منابع مشابه
Glutamate transport asymmetry and metabolism in the functioning kidney.
Renal glutamate extraction in vivo shows a preference for the uptake ofd-glutamate on the antiluminal and l-glutamate on the luminal tubule surface. To characterize this functional asymmetry, we isolated rat kidneys and perfused them with an artificial plasma solution containing either d- orl-glutamate alone or in combination with the system [Formula: see text]specific transport inhibitor,d-asp...
متن کاملglutamate transport and metabolism Introduction: Glutamate transport, metabolism, and physiological responses
Hediger, M. A., and T. C. Welbourne. Introduction: Glutamate transport, metabolism, and physiological responses. Am. J. Physiol. 277 (Renal Physiol. 46): F477–F480, 1999.—The material covered in this set of articles was originally presented at Experimental Biology ’98, in San Francisco, CA, on April 20, 1998. Here, the participants recount important elements of current research on the role of g...
متن کاملThe effects of acidosis and alkalosis on the metabolism of glutamine and glutamate in renal cortex slices.
Studies of the metabolism of glutamine and glutamate by renal cortex slices from acidotic, alkalotic, and control rats were performed. 88-95% of the glutamine and 104-115% of the glutamate taken up from the medium could be accounted for by the products found. Acidosis increased glutamine uptake and conversion to ammonia, CO(2), glucose, lactate, pyruvate, lipid, and protein. The increase in glu...
متن کاملGlutamine transport and metabolism by mitochondria from dog renal cortex. General properties and response to acidosis and alkalosis.
Mitochondria from dog renal cortex were incubated with L-[14Cglutamine. Glutamate metabolism was prevented by inhibitors so that glutamate accumulated either in the mitochondrial matrix space or in the medium. The formation and accumuation of glutamate formed from glutamine and the distribution of glutamine in the mitochondrial fluid spaces were studied. In the matrix space glutamate rapidly re...
متن کاملGlutamine transport in rat kidney mitochondria in metabolic acidosis.
In order to study factors regulating renal ammoniagenesis, the transport and metabolism of L-glutamine were studied in mitochondria from kidneys of control and acidotic rats. On incubation in 1 mM [(14)C]glutamine, there was production and accumulation of [(14)C]glutamate within the matrix space. However no [(14)C]glutamine was detected in the matrix space, even with 10 mM [(14)C]glutamine as s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The American journal of physiology
دوره 274 5 Pt 1 شماره
صفحات -
تاریخ انتشار 1998